- · 《北京交通大学哲学社会科学文库》入选专著获乌拉圭驻华大使馆重点推介[01/06]
- · 北京交通大学8人荣获詹天佑铁道科学技术奖[01/06]
- · 我校交通运输工程博士后科研流动站在2020年博士后工作综合评估中被评为优秀等级[12/25]
- · 我校“研究生科学道德与学风建设月”活动闭幕式暨榜样的力量报告会顺利举办[12/21]
- · 我校3个重点实验室获得首批铁路行业科技创新基地认定[12/18]
- · “宽带移动信息通信铁路行业重点实验室”落户交大暨“铁路5G创新实验室”建成[12/18]
- · 机电学院师生获《机械工程学报》第四届青年杰出论文奖[12/15]
- · 研究生院召开课程建设及教育教学改革项目检查会[12/14]
UKF地铁短时客流预测研究
作者:范橙 徐宁 晏彬 晏秋 唐智慧
关键词: 地铁; 客流预测; BP神经网络; 状态空间方程; UKF;
摘要:为获得较为可靠的地铁车站实时客流,提出基于神经网络与无迹变换卡尔曼滤波(UKF)结合的信息融合预测方法。首先利用各站点间进出客流时空相关性,在运行时间约束下组织预测向量,以BP神经网络为函数表达给出目标站点客流的初步预测值。在此基础上,利用无迹变换卡尔曼滤波解决神经网络过学习造成的误差,以提高预测结果精度。最后选取实例验证算法的准确性,结果表明,该改进算法可有效提高预测精度,满足运营需求。